

HATCHERY HYGIENE

www.cidlines.com

luc.ledoux@cidlines.com

CONTENT

I. Introduction

- Sources of contamination
- Typical hatchery bacteria

II. General hatchery hygiene

- Employees
- Visitors
- Minimize hatchery contamination
- pH rotation

III. Hatchery lay-out

- Different zones
- Product flow, People flow, Air flow

IV. C & D: intro

V. Sanitation program and CCP's

Hatchery sanitation as part of a chain:

BREAK THE CHAIN OF INFECTION!

Breeders:

A hatchery relies on breeder farm management to receive quality hatching eggs.

Hygienic transport

Hatchery:

incubates eggs and produces quality chicks, largely depending on the quality and management of the

transporteggs.

Hygienic

farm:

House has been cleaned, sanitized, pre-heated, good ventilation, feed, water = chicks take off for a good start.

A happy customer!!

The main source of hatchery contamination

Dirty eggs are main source of contamination

Bacterial contamination

Egg type Bacterial count

• Freshly laid 300+

• Clean 3,000+

• Soiled 26,000+

Very Dirty 400,000+

A pore in the egg shell

A pore and bacteria

Way of contamination

- External contamination through the pores and hairline cracks in the shell
- Vertical transmission (from infected flocks)
- Internal contamination (of yolk and albumen)
 e.g. Salmonella Enteritidis

"a hatchery is a bacterial time bomb" (Brian Hodgetts)

The invisible enemy

- Under optimal conditions a bacteria can divide every 20 minutes.
- In 24 hours (72 divisions) one bacteria can theoretically become 4,700,000,000,000,000,000,000 cells.
- The one bacteria goes from being invisible to the naked eye to a readily visible colony of bacteria cells.

Typical hatchery bacteria

E. coli

- •faecal indicators (Coliforms, Salmonellae...), naturally present in faeces
- eggs with faecal contamination from hens
- •faecal material from vermin, insects, wild birds (trolleys standing outside) and PEOPLE (hand hygiene, showers, no birds at home, ...)

Typical hatchery bacteria : Pseudomonas

Pseudomonas

cause bangers (by gas)and rots

=> importance of candling at early stage of incubation (7-10 days)

- can cause yolk sac infection
- are resistant to QAC

Typical hatchery bacteria : Salmonella

Salmonella

- •Vertically transmitted (breeder flock) or by cross contamination (in hatchers, during pulling and chick processing) even through contaminated "exploders"! Not always the same serotypes as breeders (Bailey, 2002).
- Process positive flocks at the end of hatch!
- Data from post mortem reports of chicks in 1st week of life!
- Can survive in fluff for >4 years
- E.U. zero tolerance (*S. enteritidis*, *S. typhimurium*, *S. hadar*, *S. infantis* and *S. virchow* : EU dir. 2160/2003)

Typical hatchery bacteria : **Staph**yloccocus

Staphylococcus aureus

 Transmitted by the egg OR by the staff (eg infected wound, sneezing,not properly covered,...)

=> importance of hand hygiene: washing AND disinfecting with alcoholic liquid or gel that meet EN 1040 and EN 1500 standards (Check with moisturised swabs on hands!)

Typical hatchery fungus : Aspergillus

Aspergillus fumigatus

- esp. during hot, dry weather:
 sporulation and when humid:
 growth (wet-dry-wet cycles)
- spore mould "bloom" cycle :
 2-3 days
- fungus not eliminated by QAC
- spores not affected by formaldehyde fumigation!
- ventilation systems, pad cooling, transfer and in-ovo vaccination equipment, ...

What happens when hatchery sanitation declines?

- Increase in respiratory bacterial and fungal diseases: aspergillosis, staphylococcus, pneumonia
- Increase in navel and yolk sac infections
- Bacterial conjunctivitis, esp. pseudomonas
- Huge mortality possible if vaccines become contaminated, almost 99% death
- First 5 day mortality generally goes back to the hatchery

→ An unhappy customer!!

CONTENT

BioproteXon by CID LINES ON THE PROPERTY OF THE PROPERTY OF

I Introduction

- Sources of contamination
- Typical hatchery bacteria

II. General hatchery hygiene

- Employees
- Visitors
- Minimize hatchery contamination
- pH rotation

III. Hatchery lay-out

- Different zones
- Product flow, People flow, Air flow
- IV. C & D: Intro
- V. Sanitation program and CCP's

Employees & visitors

- The company provides:
 - Company clothes (working clothes and towels stay within the hatchery, washing with OMNIWASH)
 - Shoes
 - PPE (rubber gloves, mask, goggle, ...)
 - Changing room with showers
- Hand hygiene
 - Wash with KENO® DERM (disinfecting hand soap)
 - Disinfect with KENO® SEPT L or G (liquid or gel alcoholic and CHX solution with glycerine)
 - Boot hygiene
 - Foot dip with 0,5% VIROCID® or KICKSTART

Minimizing hatchery contamination

Standing water anywhere in the hatchery is a Bacterial Breeding Ground:

Important to maintain Spray Nozzles, Humidifiers, Foggers

Minimizing hatchery contamination

Table 2. Qualitative grading of hatchery fluff by quantitative bacterial count

Grading	Total bacterial count/g
Excellent	< 75,000
Good	" 150,000
Fair	" 300,000
Poor	" 500,000
Bad	> 500,000

Minimizing hatchery contamination

Table 1. Grading of hatchery equipment and air by total bacterial count (TBC)

Grading	Bacterial co	lony count	Mould count
	Machines	Rooms	
Excellent	0 - 10	0 - 15	0
Good	11 - 25	16 - 36	01 to 03
Average	26 - 46	37 - 57	04 - 06
Poor	47 - 66	58 - 76	07 - 10
Bad	67 - 86	77 - 96	10 - 12
Miserable	≥87	≥97	≥13

pH rotations of detergents

- Alkaline cleaners may leave detergent residues on surfaces along with precipitated minerals. Biofilms may also form.
 - 1) Rotate with **acid** tray wash and foamers for one week out of four to eight weeks, to remove residues, scale and mineral deposits and biofilms.
 - 2) This pH shock is highly unfavorable for micro organisms! (bacteria and virus prefer an alkaline environment)

CONTENT

- I. Introduction
 - Sources of contamination
 - Typical hatchery bacteria

II. General hatchery hygiene

- Employees
- Visitors
- Minimize hatchery contamination
- pH rotation

III. Hatchery lay-out

- Different zones
- Product flow, People flow, Air flow
- IV. C & D: Intro
- V. Sanitation program and CCP's

III. Hatchery lay-out

Basic hatchery planning

CLEAN ZONE

Zone with low contamination risico (disinfected eggs)

NEUTRAL ZONE

Zone with intermediate contamination risico

DIRTY ZONE

Zone with high contamination risico (chicks = fluff, and dirty baskets)

III. Hatchery lay-out

Product flow

CONTENT

- I. Introduction
 - Sources of contamination
 - Typical hatchery bacteria

II. General hatchery hygiene

- Employees
- Visitors
- Minimize hatchery contamination
- pH rotation

III. Hatchery lay-out

- Different zones
- Product flow, People flow, Air flow

V. Sanitation program and CCP's

IV. C & D : Intro

dirt removing factors

- mechanical energy (broom, high pressure)
- thermical energy (°T)
- chemical energy pH (e.g. acids remove calcium, alkalines remove organic matter) in function of concentration, need minimum contact time!
- CONTACT TIME

IV. C & D: Intro

steps:

- 1. Dry clean (hatchers, plenums, trucks, ...)
- 2. Pre-rinse?
- 3. Apply detergent and allow to soak 15-20 min
- 4. Rinse and LET DRY (1 mm water / m² = 1 litre / m² (40 sq ft = 1 gal); we only apply 250 300 ml disinfectant / m²! => 300 % over dilution)
- 5. Disinfect (do NOT rinse)

CONTENT

- I. Introduction
 - Sources of contamination
 - Typical hatchery bacteria

II. General hatchery hygiene

- Employees
- Visitors
- Minimize hatchery contamination
- pH rotation

III. Hatchery lay-out Different zones

- Product flow, People flow, Air flow
- IV. Hygiene intro

V. Sanitation Program: eggs:

different alternatives to formaldehyde fumigation, T

independent (formalin needs 20 C or 68 F)

12 ml CID 2000

+ 35 ml H2O / m3

20 min contact

CID 2000 @ 20-30 ml conc. / m3, 60 min contact time

Spray 200 ml VIROCID @ cold fog VIROCID 1:400 / 100.000 eggs $^{\circ}$ T : min 3 $^{\circ}$ C > egg content saturate room

10 - 20 %

Egg fumigation

Application	Product	Frequency	Dosage	Contact time
© CD LINES 2010	VIROCID® (broad spectrum disinfectant)	After egg delivery	0.2 L VIROCID® + 4 L water for 1000 m³	Minimum 15 minutes with recirculation

Hatchers

Application	Product	Frequency	Dosage	Contact time
Foaming	BIOGEL (foaming alkaline detergent) Rotate with acid TORNAX-S	After every use	2-5%	15 - 30 minutes
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	VIROCID® (broad spectrum disinfectant)	After every batch	0,5%	Minimum 15 minutes

First dry cleaning!

The foam (**gel**) detergenter should get 15 - 20 min contact time, then rinse and <u>let dry</u>!

then *foam* disinfect: better visualization, longer contact time, less aerosols (MEL)

Crate washing

Application	Product	Frequency	Dosage	Temperature
None No.	DM CID (non foaming, alkaline cleaner)	After every hatch	0,5 - 1%	50-60°C (120 – 140° F)
	Rotate with PHOCID (non foaming, acid detergent)	When necessary	0,5 - 1%	50-60°C (120 – 140° F)

Truck cleaning

Application	Product	Frequency	Dosage	Contact time
Foaming	BIOSAFE (foaming alkaline detergent)	After every use	2-5%	15 - 30 minutes
Spraying	VIROCID® (broad spectrum disinfectant)	After every batch	0,5%	Minimum 15 minutes

Critical control point: broken eggs

Critical control point: hatcher trays / baskets

Critical control point: fluff behind profiles

Critical control point: scale deposits on surfaces

Critical control point: scale deposits on walls

Critical control point: fluff in rubber strips from doors

Critical control point: fluff in ducts, outlets, ...

Conclusion:

Sanitation Program: product range:

- 1 2 foaming (gel forming) alkaline detergents for eqpmt and trucks
- 1 foaming acid detergent for de-scaling incubators, eqpmt
- 1 non foaming alkaline detergent and 1 non foaming acid detergent for <u>tunnel</u> wash of trays and chick boxes
- 1 disinfectants for eggs, surfaces and foot dips
- 1 hand soap and 1 alcoholic hand disinfectant
- 1 shower gel / shampoo
- 1 laundry wash

TOTAL = 6 - 9 products for all sanitation

Take Home Message: BIOSECURITY = break the chain of infection!

So, PREVENT rather than cure

